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This report deals with the development of a method
which gives a lucid and convenient solution of the flow
conditions in the vicinity of a common, thick airfoil sec-
tion wherein the thickness of the profile is taken into
account. The method consists in making the airfoil the
streamline in a parallel flow by disposing on its mea,n
line certain source and vortex dis~ributions the fields
of which are superposed on the parallel flow. These dist-
ributions of singularities are secured for the general–
ized Ka’rm<n—Trefftz profile by means of conformal trans-
formation from the flow about a circle. Five different
distribution functions are afforded for the density of
superposition, which combine in a specified manner to the
necessary distributions of singularity and represent a
generalized K~rmin-Trefftz profile in parallel flow. F or
these profiles the speed for each of the five distribu-
tions is then computed independently of the angle of at-
tack.

This substitution of a profile theoretically secured
%y singularities is then extended to incltide more general
airfoil shapes, since a simple method permits a close ap-
proximation of any profile by a generalized Karman-Trefftz
profile with known substitution of singularities. This
approximation then affords the solution of the velocity
field in the neighborhood of the general thick airfoil by “
a convenient method., For each of the five functions of the
superposition density a speed diagram iS plotted.; the
curves of constant speed parallel to the coordinate axes
are combined.to,.an orthogonal systeg. The readily dis-
cernible effects of the iridividual singularity- distrfbu-
tions on the $-peed at any point of the plane of the section
—-—- _________ ____ “ __ ---—-———-
*llDie ebene Potentialstr~mung urn allggemeine dicke Tragfl&g–
elprofileoll Jahrbuch 1938 der deuts~hen Luftfahrtforschung ,
PP. I 3 - I 26.



2 I?ACA Technical Memorandum No. 1023

are in a simple manner correlated to the speeds. For com–
parison the speeds can be computed hy the same method con– -
formally to 3irnbaum1s approximation. It is found that
the omission of the profilo thickness is permissible only
at great distances, that is , approximately of the order of
magnitude of a wing chord.

A method is also given which affords a check on the
agreement of the profile contour with the closed stream-
line defined by the singularity distributions. L further
method enables the prediction of the profile contour for
any selected sir.gularity distribution.

After completion of this article, Z.f.a.X.M. , vol. 18,
1938, P. im, carried a repart by Y. Weinig, entitled:
l?TEe Flow Conditions in the Tield of Thin, Slig~htlY Cam—.
%ered Airfoil Sections,ll which gives the velocity distri-
butions for thin pr’ofiles in accord with the writerls
calculations (figs. 26, 27, and 28). Weinig also consid-
ered the effects of coinplicated camber shapes. But the
essential of the present article is the determination of
the effect of profile thickness, which was not considered .
in Weinigts report; although it is very pronounced, accord-
ing to present study. In general, it’should be stronger
than the effects of the mean-line forms exceeding Eirnbaum’s

formulas.

.

A solution of the two-dimensional flow about thin
airfoil sections is afforded from either Birnbaumrs method
(reference 1) hr Glauert’s (reference 2) by the superp.o–
sit ion of vortices on the mean line of the profile. But

/ this theory fails Jo ~l~ow for the profile ~hick~e_ss.
While the two-dimensional flow a%otit-t~ick profiles can
%q solved by means of conformal ?ransf ornazion, it in—
volves consifierable paper work, except ‘for particular
families , such as the Joukowski , Karman—Trefftz , and gen-
eralized K&rr&n-Trefftz airfoils (reference 3;. In adtli–
tion to that, these arguments do not iend themselves to
the solution of the flow in vicinity of a wing of finite
span, because conformal transformation is applicable only

~ to two–dimensional flow and the application of the data
deriv’ed from it tc three–’dimensional- proces ses is linited
to particularly favorable cases. On tl~e other hand, these
interference fields in three—ciiaens ional flows are fre-
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quently important , especially for biplane calculations*
Hence,. i-fthe. th.i.ck.nesseffect of a profile in all such
calculations is to be accounted f or , the cog f.orrnalt.r~.ns— ~
f-ormation must be abandoned in favor Of the E~ngUl17,!~~Y—... __
method as f oi tfi’e”tili-_n-pi ofile.—.—- -—- _—— _...-— --—---— --

The -method of singularities consists in visualizing
within the body in a stream another stream that forms the
analytical continuation of the stream outside the body.
The total flow has a closed streamline which coincides
with the body contour. For the flow within the analytical
continuation yie,lds singularities , namely, sources and
vortices. The total flow can be interpreted as the field
of these singular.ities. ThUS the plane flow about a cyl-
inder is represented by a doublet superposition on a par—
allel flow (that is , the flow from a source to a sink 1o--
cated infinitely close to one another). The cylinder
radius is defined by the ratio of doublet intensity to
speed at infinity. If the cyiinder has lift, a vortex
flow past the cylinder axis must be added. In general, it
requires several, usually continuously distributed singu-
larities rather than singularities in a single point as in
this instance. On surfaces of the type of airfoil sections
the singularities are usually located along a line, that
is, on the mean line. The displacement of the streamlines
f~om the mean line corresponding to the finite thickness ~
i.s effected _by a source distributi”on;- whereas a vortex dis–
tribution produces the l_ift-inducing deflection. of flow.
S-uch representation of flow past a profile is always pos-
sible if the flow in the outer space can be analytically
continued on the inside (theory of analytical functions)
so’ that the singular points of the function are disposed
on a line wholly within the profile. This is necessary
because it is conceivable that isolated singular points
might yet be present; although they are likely tc occur
only along the chord ly very radical thickness changes ,
such as are not apt to %e encountered on the conventional
airfoil shapes.

The principal task of the present rep~rt iS to evolve
a simple method by means of which the int~nsity and the
position of the singularities can be so defined that the
closed streamline resulting from the superposition of the
singularity flow on”’’thep“ar”~’l~e”~’’fl’ow~s’.~o-incident with
the given profile contour.
—-—-__._— _________________________ —’ ——..——--——--.+--
*The solution of th-is”problem forms the subject of a spe-
cial report.
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If a symmetrical profile is chosen, the singularities
will, for reasons of symmetry, be located on the mean line.
Then the singularities could be determined in a similar
manner as known from the calculation of the flow past air-
ship hulls, by asguming the source distributions partly
constant as proposed by Von K&rm6n (reference 4) and so
defining the unknown Intensities that the b~dy contour be-
comes stream surface. 13ut then the determination of the
starting point of the superposition involves unusual dif-
ficulties. If it is wrongly chosen, the density of super-
position at the start fluctuates between positive and
negative values , which was the very reason for the ulti-
mate change to surface superposition on airship hulls,
especially in the case of transverse flow so as to avoid
these difficulties (reference 5). For the two-dimensional
problem in question a different line of attack is pursued
from the very beginning. Since the flow past airfoils of
a certain family is readily afforded from the flow past
a circle by means of conformal transformation, the singu-
larity substitute is forthwith computable for such pro-
files after inclusion of the flow within the conformal
circle. Certa3n laws and typical distribution functions
are acquired here which are faithfully transformed into
general profile forms.

If the singularity distributions are given, the next
problem consists In computing the flows of the separately
found singularity distributions which are then easily com-
bined into the desired flow of’a prescribed profile.

With the computed singularity distributions new pro-
file forms with desired form characteristics can also he
constructed
formation.

without having to resort to conformal trans-

NOTATIO?J

point in the plane of the ‘circle

consecutive point in the plane of the section

starting point in the plane of the section

ordinate in the plane of the section measured
from the mean line

ordinate of the mean line
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q~
1

Yjj ordinate of the streamline

1 ‘— Yl” ord-lmwte -of the mean Line .at....int~nt~x = + ~’

Y2 ordinate of the mean line at point x = - ~~!

DI thickness of profile at paint x = + ~’

D2 thickness of profile at point x = - ~’

Dmax maximum thickness of profile

t profile chord

5

a distance OAl, criterion in plane of circle

~t half distance of branching points In plane of section

d measure for profile thickness .

tan $ measure for profile camber

IJ measure for reversed curvature of prcfile

6=Km trailing edge angle of profile in radians

~(~), Q(z) complex _pntential function in plane of circle
and section, respectively

if(~), t(z) stream function in plane of circle and section,
respectively

Vm e
_iat

air flow in plane of circle

Vm e–is air flow in plane of section

Vx.Vm COS CL component of flow in x direction.

‘Y =Vm sin q. component of flow in y direction

‘n normal component of velocity at the slit in plane t
and z, respectively

I
I ‘t tangential component of velocity at the slit in

‘plane ~ and z, respectively

u speefl along x axis in plane of section

v speed along y axis in plane of section

Id —
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w a~solute amount of speed in “plane of section

4 angle of speed toward positive x axis of plane of
section

((

~\
qv(~)) ‘lV ~, strength of source per unit distance

yj(c), Yvi ~ ! strength. of vortex per unit distance
G\ \a’~/

base function of-the singularity distributionsfv(~)

.

with the ordinal number v

ratio of integral of flow function of source

;f ‘,
distribution fv ,\p ; to undisturbed

/
7air flow at point -x–; --

a! al

ratio of the integral cf the flow function

‘“t’of the vortex disti-ibution fv --
( at,J

1. THEOfiy

1. Solution of Singularities

a) J3ukowski Profile

The Joukowski profile Kz! (fig. 1) in the C plane
in the reflection of a circle K2 in the u plane ,
transformed 3y the conformal function

(1)

frome plane u in plane ~. This circle K~ is given
by three quantities, namely, dista~lce

—— —
AlA2 = 2a, which

defines the profile chord, distance ~~~ = a, tan ~,
which defi~es the profile camber and distance ~~ = d,
which defines the prefile thickness. From these quanti-
ties the radius of circle K2 follows at

R= ----- + d {2)
Cos p

its midpoint 02 has the coordinates

‘o = -d cog@+ i(atanp+ dsinp) (3)
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a
Circle Kl, with center 01, arid-radius -— and a

Cos P

radius vector amount-~qg
,,,,’

rza l+tan$
.\ -.’

(fig. 1) is transformed

to’ ~ —. ,. .ra,. -.. .

sin T + ‘?~tana-$ sin2’”9 j (4)
/’

,,

by the coriformal .funct”io,n(.1) in
a double curve ~11, -consi,der-eti‘herein as the mean line
of the profile. Its coordinates are:, ‘

(6)

t.The slope of the mean line at any point –T is accord- ~
ingly a

The inside of this circle K1 then forms the sefond posi-
tion of the ~ plane, so that the mean line KJ is at
the same time the slit in the original position fo,r tran-
sition into the second. Points Al! .and A2J are the
branch points of the transformation. The distance of these
points from the zero point is ~-r~;T = ~-i~;T = Za = ~1,

The flaw past profile K21 is obtained by transform-
ing with function (1) the flow past circle Ka from plane
a into plane c. This flow in plane u, wherein circle K2
is in a parallel flow at angle at and speed V~ at in-

finity, is given by the complex flow: potential

If, to insure smooth flow-off at the trailing edge, a stag-
nation point is to be located in point Al, then It must
be that
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. . r“= 4W V~R sin (~j’+ ~). (9)

Now when the flow conditi oris within the-’’pr:ofile“are
considered as continuation of the- looked-for flow in the
outer space, it is ‘hardly to be expected that the same
speeds prevail on the upper and lower edge of the assumed-
ly double slit KZ1, because these- edges form the transi-
tion to the. second positi’on. This is ,readily apparent
upon exa-mination of the speeds at circle 1{~ of plane a
the upper arc AIBIAa of which becomes t~le upper edge
and the lower arc A2B2AI becomes the lower border of the
slit. The flow past circle ICa affords the speed at
circle Kl; whereas conformal function (1) yields the
speed at the slit which can %e divided in its normal and
tangential components. To get rid of the conformal trans-
formation, the plane of the profile, plane C , must be
interpreted as plane closed in itself, wherein the slit
loses its significance and lecomes the mean line. Then ,
however , the difference of the normal speeds Vn on the
upper and lower border of the slit must be interpreted
as source superposition (see fig. 2) and that of vt as
vortex superposition. The source strength q per unit
length at a point Cl of the mean line is accordingly
given by

and the vortex strength Y per unit length by

(lo)

With these data the singularity distributions for a
Joukowski profile can be computed.

)?or future purposes the flow velocity Vm in plane
a (fig. 1) is divided in its components parallel to the
axes of the coordinates

v = Vti Cos a’ ‘!
fy

:’ (12)
VT = Vmsinul

./

and each of the flows created %y the components is analyzed
separately. The complex flow potenti~l (8) divided con-
formably to (12) affords the speeds % in the u plane

and the speeds
‘t

=u-iy through the known relation

do The speed tn the”
% “ ~ q“

~ plane produced by the

w flow reads
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a @w “d Q(u)w da
—--- = ——-— — =.-,
d~ ‘d a dl “-

u a a3
--;~[;+2~~$+3~

1

R a. a uo2 a=
~+ 2i-sin@~l+ —-+_ —

Vw L a au a i_aua2a2 1
(13)

a a---
a a

and that due to the T flOW iS:

d @T d@(u) Tdc7
-.-—- = -— —---- -- =
d~ da d~

a RZ?-a

L

u. a2 002 a3

1
RF

1

u. a ’002 a2
–+n-+2--— +3--- ---2 -cos@ l+—-+———

0= a’ G’ a
1

-iv~ ~—~– ‘-----——------- aua 2 U:J (14)c---. — ----— —

CT a---
a a

on the assumption that the distance pol of the center
o~ of the circle from the zero point is short compared
to a and hence small compared with lg~ = r. This is
always the case when restricted to the conventional profiles
where dia is always << 1 and tan p< 1; hence, es-
pecially thick strut sections are discounted.

Entering the values (2), (3), and (4) in equations
(13) and (14), where a = r ei~ indicates the coordi-
nates of circle Kl, gives the velocities on the mean
line , the real and imaginary part representing the com–
ponents u and (-v) al?ng the coordinate axes. From
these, with consideration to equation (7), the tangential
and normal components follow at

‘t
= u(1 - 2 tan2 S cos2 y) - 2 v tan 8 cos cp1

i-
(15)

.vn =2utan@cosq+v(l -2tan2@cosa Q))

(see fig. 3).
..- ., -,,.

,
After expansion of the speeds (equations (13) and

(14)) in powers of d/a and tan p - the terms of higher
than the second order are considered negligible - there
is obtained with equation (15) and consideration of (10)
and (11) a close approximation for the singularity dis-
tributions of the Joukowski profile.

I
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For the flow along the w axis the source distribu-
tion reads*

sin V ~~[cos ‘(1 - Cos 9) + ‘in’V] Iq(q)=-2 vw--4——

2

~a[cos T(1 - cos q) + sin2 q - 3 sin2y cos cp]+..~,>(l6)+2%
J

and for the vertex distribution

+ 6 sincpcoscp~ + ...’
)

(17)
J

and for the source distribution along the T axis

I
-Cos Cf(l - Cos q)

q(v) = -6 VT: tan ~ i —-———— + sin V
L sin q

1- 2 sin q cos q + ...
J

(28)

and the vortex distribution

d-l-cesq 7
Y(q) = 2 VT ~:–==:fl +2 ~;

t
— - sin q)

sin rf L sin q d

–~tan$;~-cOsY- 4sincp+6sinQcos v
a 1i-sin q -J

Tl-
- tan2 PI

Cos Cp 1
Y

——--~sinq+ 2 sincp cos ~i+ ..;> (19)
L sin q i

Between the angles cp of plane a and the running
coordinates of plane ~ the simple relation

*l’he heavy separation lines in the formulas indicate the
placeswhere the equations should be broken off when terms
of the second degree are discounted.
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fcoscpz- ‘ (20)
-. ....- ,.. . a’. . .

exists according to equation (5); besides, the floy at
infinity remains unchanged in quantity and direction in
the transformation, so that Vw = Vx, VT = Vy, and
~r = a.

A study of the computed singularity distributions
discloses a consistent recurrence of the individual ana-
lytical expressions for the superposition density from
which the entire distribution can be obtained. They are
the four analytical expressions

fl(~/a’) = —~-[cos v(1 - cos q) + sin’ ~]
sin q

=+ r -_FT;T ,

1-—-—.——— (l+ 2 ~/a’)
l+[/al

‘2(~/a’) = l–COs cp
[

-F7:i

1-—-—-—— —— =+ --—————-
sin cp w l+~/al

—.—————

0 ——

> (21)

.

which, for practical reascns, are treated individually.
The expression for the source distribution fl(~/a’) is
given separately; although it is composed of f2 and f~ :

because of the necessary secondary condition

+a t

1P-- J f(!/a’)d~ = Oat
_a I

(23 )
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which must accompany all source distrihutionts. Through it
the contour stipulated by the source distribution

f
(

t \,
becomes a closed curve at infinity. Functions

=T )

fl&’l f {~~ \ of which the source distributionsand
\a8) 4\a1 j

(16) and (18) are composed,
(23) by itself.

each satisfies this condition

In the distributions
f2 j_\,

(
and

/[\

at ) “i~~j there

can be recognized the well-known Birnbaum formulas (refer_

ence 1) for the vortex distributions which transform a
fl’at or curved plate into a streamline. It af’for&s, ac-
cording to (19), the vortex distribution for the plate which
is always occurring

(24)

and, according to (1’7),the vortex distribution which indi-
cates the effect of the curvature and produces a rotation
of the, zero lift direction (a. = -B):

(25)

These known Birnbaum distributions are supplemented
further by the effects due to profile thickness, that is,
the source distribution (equat$on (16)):

(27)

The quadratic terms are di~coun ted for the present. They
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merely afford in closest proximity of the profile contour
t

a portion to the fow and are needed only when checking the
,=~.~coincidence, of-.t-he.--c~lode.d-.s-vreamlineresulting from the

1 singularities with the profile contour (cf. appendix).
I

Otherwise they are important only for error appraisal.

All singularity distributions extend fr”om t= +a*

I tto =-a’, that is, from the trailing edge of the pro–
file, the rear branch point Alf to the forward %ranch
point A21, located slightly behind the nose. The dis-

{(’” and f,(() have in the forwardtributions fl , --
\avj I --i\a j

branching point ~ = -al an infinity point, that is, they

approach infinity as
(l+hj-’”

b) The Kdrm6n-Trefftz Profile

\fhereas the Joukowski profiies terminate in an infi–
nitely thin trailing ed~e, the I(arinan-Trefftz profiles
form a finite angle 8 _on the tr?.ilin.g edge and so ap- ..
pr-each the commonly e-mploy~d profiles mu~h clos~r. N ow
the question arises as to the changes in the established ,
distributions when a Z~rm~n-Trefft.z profile is to be stream-
line in a parallel flow. The conformal function

(28)

transforms the circle 11
(fig. ~) in a crescent Kl~

with angle 8 , when
I

and

(29)

(30)

For .6 = O, circle KI becomes the infinitely thin mean
line,of the Joukowski profile, s ince (28) affords the
conformal function (l),. The K&rm&n-Treff’tz profi-le will <,

I Be , on the whole , thicker hy the thickness of the crescent

I than the Joukowski profile. In view, therefore, of the
singularity distributions a greater disp&cemen_t flow may

I be anticipated, that is,
— ——.- —_ __

.— a nev~~~r~e ~istribution; wbe_re-...—
R= t~vortex distribution’s chamg—i-v~fy $.i_t&3.e,–Q<-f-
anal-ys~-s.fi.~1pr~ie~d—tlerefore from ~ symmetrica~’.—-—- ___—

~aV&-n-Tref.f.tz profilec—---——- –-— – -.—._..___—._-——-- —-. --

I .. ..... ..... .... . —......-—.-——
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On transformation of t-~g; u“ plane in the t plane
the upper or the lower rim of ‘the-crescent Klt or any
one curve in its interior becomes a slit in the C plane.
The straight line ~~A~ is selected (fig. 4), that is,
the median line K31 of the crescent as slit, on the cir-
cumference of which the. tangential and normal components
of the speed must be computed as on the Joukowski profile.
To this end the speeds in the CT plane on the reflection
of this slit must be known, which follows from (28) at

they are two circular arcs ~3 symmetrical to the w
axis , meeting in points Al and Az and having a radius
vector of lal~a, where ~ is the circular angle in
the CT plane . After transformation the area bounded by
the circular arcs Ka forms the second position of the
~ plane.

For the speeds at the slit in the ~ plane equations
(5) and (9) give the flow along the @ axis at:

(32)

and the flow along the -r axis at:
02

d@~ -1 - ;;d@(a)T @ . VT= ~2 1
—.- —-—- —- -— = --\l+G-–-T5T5 - 2R I
d~= (ICJ d~ ‘1 I - ~

-—--— -——---
1 (33)

u t2-“~’l-–-+.
a12

if tan $ = O, u = -d, R is given by (2)and u lly (31).
According to (10?, the source distribution for the flow
along the ~ axis f ollows from equation (32) at:

.,
.

+ sin2*J- 3 sin2~cos W] + ~K b~sinw~cosl!.f + ‘...} (34)

. ------.
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and, according to equation (11) , the vortex distribution
of the same flow direction ‘

.-..
.

(34a)

For the flow along the TI axis , equation (33) gives the
source distribution

‘1( [\=o
!, ---,1 (35)

and the vortex distribution

f-(l-
L

cos$)+2~[l -cosV-sin2 ill

2 sin2$+ 2 sin2Vcbs Wl

Irl- 3cos Q -~ sin2$
L 2 1

.

4COS W)+ .........
)

(36)

The transformation leaves the air flow at infinity un–
changed. The secured singularity distributions also
contain the circular angle ~ which is not as simply
related to the abscissa ~ of ~ plane as the angle
9 in the Joukowski transformation. In this instance
the relation is obtained by entering the coordinates of
circle K3 (equation
(28); then

Q ~ 2 (tan–l)

(31))in the c~nformal function

1
E-—
al

—-—.

t1 +’ --

al

l/k
i-

1 (52 JJ)1----
L 416alJ

(37)
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For Joukowski profiles 8 = O and k = 2, then

~—----

(38)

t
For practical reasons the coordinate ~~ in the plane of

the profile is now considered as a fixed given quantity,

t
and t , related to -- and 6 through equation (37’), is

a’
represented in the form

.
The circular angle q for Joukowski profiles is given
by equation (38); angle c is largely dependent on angle
(s, specifically C = O for 8 = O. With (39), equations
(37) and (38) give

r - —-----

/ l+ ~/al ‘Ll_ll~jl:l
t$/4 -

1- ~fal “-

.— --- —— - 1?

~ ~ ~ \; *2 (tan–l)

(
J----—=-—--—---—--=--—--——-—(40)

~i )

[

-~/a’= I_~/91TK/41 + :-–- --–
1[

-—---——-

l+~/al- l+~/a) 1

and C(-C/ai) = -c(+t/ar). ‘ 5 “The correction angle c ( —
\ a~j

is small for the usual 6 and in close approximation may
be considered linear in 8 and K , respectively, as

~(!/a’)
exemplified in figure 5,where ---— —— is plotted

t
S

against -5– independently of K .
al

Expression (36) then affords with (38) and (39) the
analytical expressions for the superposition density
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sin W
——- .

{
Cos *(1

(2 “-’-.

Cos $)

d)[-——at

+ ‘in’w ‘}

1 t’ 1- 2–––
al’

-— —- ——--

l+ f/a’J

1 5— ———

s(41.)

al’

differing only by an additive term from the original ex-
pression (21)0 The~~ also have zero or infinity places at
the branch point AZ) just as the expression. fu(t./al),
except that the limiting values at these places f/a’ =*1’

are now reached with the power* (1 - ~/a!)- + L –H,
However , even this change in the singularity functions in-
cluded in the correction term is negligibly small for all
usual angles (6 ~ 360).

These known expressions are supplemented by a, new -+(
one for the singularity distributions of the crescent: ‘“ ‘“

F5 J_ . _&LA_()al
1 E2- ---

a12
,,, .

-——_________ ____,

/ L — ----

at2
,,-, ,,, .. ”-—.,. ,.

——— —- ——— ——— ——. ———— ——— ——— ————— ——— ——— -

* If
t = _{al _ A), equation (4Cl) becomes

c[–(al-A)] =+21 –~
1

1/2 f ~ A
~i-]’’’j...j<1-i

Lza’ L
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where (42a)

Function F5
($)

gives the source distribution of the

crescent

(43)

For the singularity distributions of the K~rm~n-

Trefftz profiles, the factor
4

=l+K + , . .
;~

is sup-

plementary to those of the Joukowski profile; it affords,
besides the vortex distribution caused by the thickness of
the crescent,

(44)

merely distributions which are small from the second de-
gree at least. Summed up, there is obtained, besides the
Joukowski profile singularity distributions , additional

, ~istributions for the symmetrical K<rmdn–Trefftz profiles:
namely, the source distribution ~5(~/af) and the vortex
distribution K1’2(~/af), which, taken by themselves, rep-
resent a crescent. For curved K~rm~n-Trefftz profiles the
afore–mentioned terms are supplemented by others which are
dependent upon edge angle and camber. But an exact calcu-
lation discloses all the’se terms to be small, at least from
the second degree.

c) Profiles with Reversed Curvature (S profiles)

The mean line of both the Joukowski and the K~rm&n-
Trefft-z prgfiles i-sa ci~rculat age. But the form of the
mean line qf a general profile usually dilt_e.r_sfrom a cir-
cula_r ‘arc for reasons of lesser center of pressure travel_—..-
by angle-of-attack changes. This is achieved by an S–
shaped mean line. The deformation of the circ~la.r-arclike———
mean llne requires an additional vortex distribution on_.
Substi~”U~~_o-nof “the pro~”iles-by- si~~ularities._..---— -—

According to Betz and Keune (reference 3) a circle
K2 (fig. 4) is transformed into a profile with finite
angle at the trailing edge and with reversed curvatu~e by
means,df conformal function
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e-- —–

-.

f -al-~-~-k

1
ip:

S——__ -= I ——

C+a’ LCJ+a”e

19

(45)

To secure the additive vortex distribution a circle Kl
is merely transformed into an infinitely thin S-shaped
mean line (fig. 6) (that is, put 6 = 0, k = 2), because
t_Le diffe_rgnt singularity distributions are known to-be

---- __

additiv~ in fir-st’approximation-~ ‘“~urthermore , the cri-
;er-i-on k- “for th-e siz”e of-the reversed curvature is

------

presumed to be small, so that terms which are quadratic
in W are negligibly sri;all.

Development of the conformal function for small w
and k = 2 affords

(46)

It splits in the known Joukowski transformation and an
additional conformal function.

The reflection of circle X ~ around ~ (fig. 6),
0= a el~, is the slit, the mean line the t plane with
the coordinates

Hence

(47)

is the equation of the S-shaped mea,n line and

(48)

the direction of the tangents of the mean line to the t
axis . Then the tangential and normal components of the
velocities at the slit follow at
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‘t
; (1=u-- - 3 COS2 Cf) v

1

~ (1‘n=~ – 3 COS2 q))u+v J

(49)

and equations (8) and (9) finally afford with (10) and
(11) the vortex distributions for the S-shaped mean line:

(50)

In these equations (50) the fact that the conformal func–
tions (45) and (46), respectively, changes the air–flow
direction at infinity has been borne in mind, giving

/
VEcos at =V =Vmcosla–~

( )
z Vx + : Vy”’

w

L
,’ \

Vm sins’ = V =T/msin’~_&
( )

Zv –’EV
T 4

J
Y4X

(51)

this change being interpreted as a rotation of the co–
ordinate axes in the ~ plane .

Then the introduction of the analytical expressions
~~;~sand the limitation to terms of the first rank af–

9 besides the known distribution for the plate.

the vortex distribution for the reversed curvature

~t” 1
?~~~=–zpvxsin Tcos$’-$vx —Cos Cf

()
———--—-

sin Cp

(52 )
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the first part of which was given by Birnbaum (reference
==-1=)-;while the second part is- due ,te the rotation of the

axes in flow direction.

The singularity distributions thus secured for a
profile with finite edge angle and reversed curvature in
first approximation, then, merely need to be combined in
a, certain manner to afford the field of flow of this pro-
file.

~f the vortex distrihutjon of .a_-selected mean line—- —.
is to be established, it can be v-i_:ua_lijze~~pr6x~imajt”e_l.y

jjr~.:uj:m o? c~rcy>ar –a~c–--(euationon (6 )) an~ r_eve~se
(equation (47)) . The coordinates of this ap–

proximation can be written in the form

(53)

Then the directions of the tangents with the ~ axis
are given by

5 p {’1 2\
tan v = Q= – 2 –– tan $ –– - 3 1–– \ (53a)

d~ al 2( al 2,

and with it the tangent in point A1’(~ =+al)by
tan VI = –2 tan 9 + v and the tangent in point
A2’ =(~= -a’) by tan V2= 2 tan P+ p.

.

The procedure in solving the profile constants
tan $ and w can therefore be the same as Birnbaum’s
(reference 1), who derived them from the tangents at
points All and A2’. But , since the tangents are hard
to establish accurately at these points, it is mo_re prac–
tical to define the curve of the third degree of the mean
line from the ordinates. With ‘nl denoting the ordinate

at ~ = + al and T12 tthe ordinate at = - ~ (fig.
2

14), equation (53) gives ..>
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This defines the profile con- with reepect to all singularity
stants for the case where the meanelements along the arc length S
line is a curve of the third de- of the mean llne affords fir the
gree. Whether ft is represented
accurately enough by this curve
can be checked by the degree of
accuracy with which the ordinate
value for t= O satisfies the
condition me/at = tan B.

profile in parallel flow the
stream function

0(2)= Vmze—*”-F&@rq(E)ln(z-C)ds-l-
.s

+~f?(t)ln(z–r)ds, (55)
s

2. Flow in Plane of Section

a) Substitution of Profile

by Singularities

The flow past a profile in
parallel flow can be achieved by
a certain continuous distribution
of sources and vortices on the
mean line of this profile. The
flow produced by these singulari-
ties must be superposed on the
parallel flow so that the closed
streamline formed by these two
flows agrees with the profile
contour . The form of these sin-
gularity distributions was se-
cured in the preceding chapter
for profiles of certain families.
If these distributions are to be
used for the aubstitutfon of
other profiles, the extent of the
coincidence of the closed stream-
line with the contour must be
checked. And this introduces the
stream functions of the distribu-
tions.

The complex flow potential
of a source element q(~) ds in
a point z is given by

and for a vortex element Y(t) ds
by

where C is the locus of the
element (fig. 7). Integration

with V= denoting the flow ve–
locity and a the angle of
attack respecting the positive
x axis. The integral equation
for the stream function

s

is now simplified so that the
integrals can be numerically
evaluated independently of the
form of the mean line. Next ,
we introduce (fig. 8)

whereby Ye 1 the ordinate of
the mean line, can, according
to (53)9be written in form

Likewise

v (-7== tgpa -w-$)
and the arc element ds itself
is given according to (53a) by

‘S=d’i’+(%)=
the small quadratic terms being
discounted.

Herewith the integrals be–

s —a’
-L “,,-

‘z—g)~+.:) df—&9Jyq (z—q +Y
a’

—a’
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. . (66a)

section must, of course,
carry the same identification.
But , since this stagnation
point Is not generally known,
some other method must be
applted~ The flow is there-
fore divided again into tts
component= along the axes of
the coordinates and the con-
stants ar,e so defined that,

, +$)’”(s+5 for the flow in the x direo-
1 +%79(;) (=–g)t+~s ~~ .. * ,@6b)tiGn, the rear stagnation

, and for the flow In the
i In additio;ato the underscored
~ integrals independent of the

yldirection, the profile point
on the Y axis (x-o, 7=71)

; form of the mean line, we obtain lies on the streamline I = O.
: cumulative integrals multiplied Then stream function (57)
~ by consistently small values
tan B

gives
and w and , together with Y. .UJ

the singularity distributions, —=$++q;;yj++q;~ “’;
a’ V=

1 they are therefore small, at +ztg@[w.(;; :)–Jva(l;o)]
\ least of the second degree. Hence;
‘ they have no further s~gnificance-.
We the-retore dispose, similarly -:{[+’ +v,(l;o)]

to Birnbaum (reference 1) ana
Glauert (reference 2), the singu-

‘ larities on the chord of the mean
line , and eo obtain ‘-:,-1-a’
W(z)=yVmcosa—zVmsina+&fg(f)mctg~d:+

I — a’

+6[~.(;;~)–w,(l;o)]}+gz,. . . . . (58)

for the flow along th~ x axia*
and

!vV
(

d——
)[ ‘)-w’(O’+)]

=;— 1+2;+% w,;;=a’VW

+2:[W, (:; ~)–w,p; ~)]–g.j ~ . (59)

for the flow along the y axis,

for the strea–mafunction.

According to the fore-
going, the singularities ex-

( tend from Alt to. A2t.
Putting +.= cgngt af f orde
an integral equation indicat-

1

iq~–the field--of‘a-ll 8trbam-
llnee–-iiithe plane of--”the”-
sect i-on, one of which is the
clos_e.d-ntr”oa_mli-ri9, -F~~t”mu-6-t

1
agree with the eect i-02pcon-
toil%-.( -— .... ‘Since iiil streamlines
are defined merely up to one

1
constant it Ie decided that
this streamline shall obtain
the ~alue 1=0. Then the

1 e“trea’mlinoof the parallel
flow which goes In the for-
ward stagnation point of the

+..

J,()
-,——& /, $ =tg+a.=%(-:; +j) /frJI

for the–; ource-sink integrals**
and
-—---—--——---——-
*~he - denotee the correction,
according to formula (42).

**~ormula (60) is evolved frOm
the relation

—
+ (tan- l)-Z-.~- (tan -1)=

x-t Y
whereby, because of (23)

++?’ mf~(+y)d~ = 0.
_a I
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+Jk)’”i(H’+i%=w+ + ‘“)
aY,u=~+~

}
a~= bPV “C.”-0@3J

fo–rath~ vortex integrals, and —+—‘D= bx ax

gx and
‘r

denoting the quad- In this case also the effect of
ratic smal terms. For the each singularity distribution
profile itself, we get $x = O
$Y=o

is given separately, in order
to preserve the lucid aspect of

Y=ye+-y, . . . . . . . .(’2) the effect of the individual
profile constants.

If the four constants ~, 6, Partial integration of (5
tan $, and w are correctly and (59) gives the four integr
defined the,contour of gener– + a’
alized K;rman-Trefftz profile ~Q,

J()

r—t

(reference 3) should agree ap–
—-=-+ ~~: (.–5)2+T2a~/a’

proximately with the stream–
line from equations (58) and
(59), if necessary with allow–

:~:{3~1[’(:1:~’[’(”$)lt
+ a’

ante for the quadratic terms. ~Qw =.l
J()~“+ (z—[ya+>’d~The agraement can be checked fiz]a’n
— a’

numerically by means of the
[(I1

E’~-P1 f.~
appended graphs which give the

.
a’ 37

values of the flow function + a’

for the source distributions K lu~~’=n fo~ /.+ (.–;2+32 “t

Qv (equation (60)) and for
vortex distributions Wv
(equation (61)) plotted against

?the ordinate ~ for varioua

xabscissas —.at

b) Field of Velocity in the

Vicinity of a Profile

As a consequence of the
resolution of the singularity
distributions which transform
a profile to a streamline in a
parallel flow, the velocity
field around this section is
established without difficulty.
The components of the speed are
given by

ayfZ)=u.dYfz)__
hy ‘i)z-v

and, according to (62),

)
1s

.

(64)

-. —u’

and + a’
/ bw,, 1

i3x/a’‘Z- J()
—~—< d[f. $-(Z:*;;Y

— a’

‘:{5P,[’J(:)l-P’[ ’($)1}

which divide into the two inte-
grals

+($)l=”’m$)isb
— a’

and
+ a’ I

. , (’5,

The singularity distributions

f~
/ g 1>,

(
can be written in the;7 )

form

Therefore the resolution of the
one general integral

——— —.—
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-.. ,

of1 ).–1+” (a’—g)&n d$
ehange8 s~ga, the root being

.—
a’ (X —t)’+pfm’ “ “

(66)positive for X<o and nega-
.-a’ tive for %>0.

is sufficient, if n is a whole
positive digit (n = O, 1, 2, 3).

Denoting the Integral Jn

After the substitution t - x = w. for the individual ~aluee of n

a’—x with Jo, J1, J2, and J=

J

(aqn-l J= [a’
—.—ZO][.+W]” —

/aJs—d(; +z)l”
while keeping fv(~/al) in mind,

Wa+ ~z
—(a’ x)

equation (65) gives
.,

Development of the in~egrand of [01PI /1 :
[01

=JO+2J1; Pz /1 $ =J,+2J,

this integral for n = 3 in
powers of w gives the integral [01

PI j, $ =JO;
[01

p= fz-j =Jl

in the form
[01

PI fs ; =JO+J1;
[ )1

P9 h{:

1

(71)
(a’)n-lJ=bl~l+b2L$+baL3+L4. .. (67)

=J1+J,

and
1 where H)]P1 f4 ; =J1+J2;

[01
pa )4 : =J,+J, ;

a’—x

L,=

,!

d w

_.(a i>~” -‘—
1

which, entered in (64), finally
_(.+w)2=+” yields the dimensionless speed

x) factors of the vortex dietrtbu-
a’—x

Lz =
, 1

wdw
———— =—xn
~a’’–(x+w)’

.}

(68)

—(a’+x’
and

while the solution of integral L,
leads to

tions, as follows:

Along the x axis

“.

a’—xsb,w+b~ dw b~ ~1—:nfl, (69)
d (: f2,-3 fL)+3(3; f?2—f2J J

L,= —–
——

_=— ~ a~a a
~02+7 ~>2—(x+w)z a’

– (a’+ x) and along the y axis

/[ 1

--
A=+ l—~“+_$’+4g$

are dimensionless ~alues. It
should be noted that

The dimensionless speed ralues
of the zourco distribution are
obtained from those of the vor-
tex distribution with (22) and
(64) . The value for the com-
ponant along the x axis is

,

1- .. . ......, ,, ,,,,,...-,,—. —-,.,, .,,..,,,., , ,,
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and that along the y axim
aQ, ~ aw, ‘“aw,

Fzp= ~—— atjla’ “ “ “ “ . (74)

Now there is lacking only
the speeds of the source-sink
distribution of the crescent

F-5

(

~ ‘)
(equation (42)), the~)’

flow function of which occupies
a special position among the
integrals. Its exact evalua-
tion requires a numerical proc–
ess, since ~5(~/a’) is given
as such (fig. 9)*. But, dis-
counting the region in proxim-
ity of the branch points All
and A21, the analytically
given form f5(t/as) (equa-
tion (42a)), which is wrong only
in the vicinity previously men-
tioned, can be used (shown by
daehes in fig. 9). Then

aQ6
+ a’

JW=-++ (z—xE&#~
—a’ 1

and \ ..(75)

aQ,
+ a’

z
—=+++f(x–&),+i=ax/a’

Ed’&

— a’ I

Solution of the two inte-
grals

/-
‘“ &dfJ =!ln(’—a’)’+I’+; arc tg~+-s
(z–t)’+? 2 (z+a’)a+yz

—a’
and

+ a’

1

-f
__L2!5L_ =2+yLn (.—a’)z+ijz

a,’.(Z–$)’+ij’ a’ (z+a’)’+jz
—1[’

+ ‘2a7j~~
2a’71

arctg22_a,z+j, ~

Herewit.hh.the dimensionless
speed factors of all the-’s\ngu–
la-rity distributions are secu;ed
w-hich, in first approximation-;
Elve the velocity field in the
vicinity of a profile. The sec-
~nd part gives the velocity fi+ld~
of every single singularity diE_-
tribution In diagrams which eme&le
easy reading of the values for
each point. The individual valuen
obtained by differentiation of
equations (58) and (59; a~~ a:. ,.-.
ante for (63), read as follows:

/.x\ -1

gives for the source distribu-
tion of the crescent the func-
tions

-----—7?——--——---

good approximation, be considered
linear in 6%KW and are
therefore plotted for 6 = 1.0.

-–2?-“‘v’{:’:j+fl~gK_,,a i)yfa’ ily[a’I
speed_iny axis direction

~)
v –2,,~~a a’

[
(

,,I’-,(;;<)
v.— = sm~ 1— I+2~+X

)
~— L

d;,

,..,,
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Here also the terms with gx and
‘Y

are quadratic

- sma”ll(equations (82) and (83)) in the appendix-

Because of the cited omissions the Z&q.m-ulas.secured
here are not ayplica%le at the profile edge or...itsirnm&–

---
— ..—.— ._.-

d,j.at_evicini.j.y, which, moreover ~--tio~-”l-d-exceed tfie Pur–
-..._

poses OT the present work.

3. Appendix. TY.e Quadratic Members of the Development

Since the singularity distributions were obtained
by means of a development according to profile constants ,
the linear terms of the development will ordinarily be
insufficient in closest proximity of the profile contour.
This fact is -of importance on>J wh_e_nat&e_mQEZng 10 check
the accuracy of a predetermined profile by the given
<istri”outions. But for pr~dict<ng the velocity field in
the neighborhood of a profile the linear terms sh’o~ld
prove sufficient, whence in this CZSE the quadratic terms
give >n error estimation.

Quoting all the quadratic terms secured would com-
plicate the representation-and entail hardly worth while
paper work in the error estimation and the check on the
profile contour, Hence the various nonessential terms
are disregarded. These are the correction terms in equa–
tion (41), which secure new analytical expressions for the
superposition density. They are themselves small as qnad-
ratic terms and produce minor , negligible changes in the
distributions of the Joukowski profile due to the edge
angle . ‘The correction term in eqvation (42) alone remains,
in order that this distribution portray the true conditions
of the crescent of the K6.rm6.n-Trefftz profile. The addi-
tional integrals in (56a) and (56b) are discounted, as the
new integral fori~s have only a slig’ht effect on the results.
All these terms can be disregarded for tile very reason
that the general profiles , for which ultimately the singu-
larity distributions are used, ao~tly deviate fro~ ~C~.rm4n-
Trefftz profiles from which the distributions have been
obtained.

There remain then the quadratic terms of the singu–
larity distributions of (16) to (19) and (34) to (36).
Of these only the distributions multiplied by V*.
VW cos a are employed; the quadratic values multiplied
%y Vy = V= sin a are likewise ignored, as the angle
of attack a is consistently presumed to be small.



Furthermore , while the wing chord is largely responsible
for the flow in y–axis direction, that is , the vortex
distribution of the flat plate (equation (24)) the thick-
ness and camber of the profile are of secondary importance.
In consequence, only the singularity distributions are

written ttlat appear for the flow in x axis direction, as
they alor.s contribute a perceptible s:hare to the resuits.
They are the source disvrtbntions

(79)

I~’(2)(5)=-:v’’KF’(+~) I
J

!’t-”1
of which the source distribution f4 -— did not appc~r

~afj

previously but will gi:n. significfi.nc? for th~. design of
new profile forms Yecause of its property of shifting tli~
=rea of maximum thickness of a profile more toward profile

center (11, 5). J’)( t~Distributions - ––
‘)

,and

(
15(2) E ~1

~a

afford a. correction to th.s contour of th~g’i/

Joukowski profil~ a.n~ the crescent, rcsy?ctively, Because
of t,he thickness effect on the c:~m%er the vortex clistribu–
tfons

are additive to t’be corrections. l,iitfi~utThese Quadratic
small terms (80) the profile on the side facing ~he curv:,-
ture radius of the mean line would be thick~r than on th~
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other (fig. 21): that is, the prefile would apparently
~a=ve a smaller camber.

In this manner the c~rrection t“erm for the stream—
line of the profile by Vx flow is obtained:

(81)
,

and inserted in equation (58), while gy (equation (59))

is being disregarded.

Differentiation of this equation affords the quad–
ratic small portions to the speeds in equations (77) and
(78):

(82)

and
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/ ,

b W3 “5; ;7L) /’x y-’)

d+ ~!’z - ‘\+K, tan $ ——- -——
\,a/

-6: tan--~-~_V4 (~7;~~! (83)—-
a x/a’ a x/al

the individual terms of which are known from the linear
distributions (equations (’?2) to (74)). Newly added are

“t\
the speeds of the source distribution f~( -- I which,

\a’)

however , can be derived from those of the known vortex
distribution for the S-shaped mean line, according to
equation (64). Because

and

; \,
b Q4 (-=-;--
––__–_E&L..

a y/af

“ x y\
aQ4[ \;T ; ;~ ;

.- —-- ---- ---- _

h WJ ~h\ ;~:--- ~
= - -—--- -—--- --- (84)

d x/al

h W4 (’?_.?_”\
I’a!jLa= ——---— ——— ——--- (85)

b y~af

––a-!~-and a gy
The terms —.-—. are disregarded conformslly

a y/at a xjat
to the foregoing arguments.

II. APPLICATION

1. Generalities

The solution of the singularity distributio~s for a
generalized Kdrmdn-Trefftz profile (reference 3) is de-
scribed in part I of this report. The outstanding fact
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Is that the vortex and source distributions necessary for
et-h-e-su%-st-ltution of a profile can. be combined from only

five different d-istri%ut ions ‘t ‘
‘V (~, Indicating the

a%scissa of one singularity. To make” the calculation as
much as possible independent of th-e angle of attack u

the parallel flow V~e -ia is divided into its component
TX = V= cos a along the x axis and its component ‘Y =
Vm sin a along the y axj.s. The first result is the vor-
tex distributions as previously given by Birnbaum (fig.

lo): the vortex distributions 2 Vy f~!‘[”$, of the flat
\z)

/’~\
plate, the vort_ex distributions 4 Vx tan 13f~ \~ ~ of

\a /“‘)
the curved plate, the vortex distribution -3 vxkL.f~ “f-.’”(al)

of S–profile. * These distributions are supplemented by
two new source distributions (fig. 11) which appear onlY
for the flow 7X.

...—
The aria-source distribu~ion

\–
‘1–2VX /-?-< ‘;

i
:fl~,, leads to a closed streamline similar

/’ a
to the symmetrical Joukows.ki profile, where ~ is the

parameter for the profile thickness. For the K&rm6n-
Trefftz profiles with finite angle ~ at the trailing

edge the source distribution ‘,-vx 5 ~;z~-’---- ----- ...-—.. .. —- ....QM .’i~ ad-d:!-i.?e!
which, considered by itself,—.. —-—. is the source distribution.—. -..—. __-—--- —..—...——
Q.X.a..sYmmetrical crescent with—e_d.~~.angle ~.‘-{fig. 11).**-~----.....---
Besides--t-h>-~&_”singularity d~~tributions generalized
K5rm&n-Trefftz profiles have still other distributions “
composed of these,five basic functions, which must be com-
%ined with the afore-mentioned superpositions and with ~
the parallel flow according to a certain law if the KArm6n-!

~?refftz profile is to be streamline in parallel flow. ./
-—

——-—-——--- ______.______________-, --------------------------------

*Constants tan B, w, ~., and 6 are discussed farther on.

,/
t “**g,_ is explained in I,. 1 b; for the rest, th,e graph

‘\at )

affords a satisfactory representation of the aspect of
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Then , in order to establish the effect of any one
of the singularity distributions on the flow formation
or the speeds- at a point of the plane of the section, the
effect of all its singularity elements at this point must
he summated, that is, integrated along the line on which .
they are located. The mean line of the profile is chosen
as the depository of all singularities. During the devel-

opment of the integral it was found that the ordinate ---
at

of the mean line (fig. 8) could be disregarded, and the
singularities themselves assumed on the x axis, with a

Ys
much simpler evaluation as a result. With ;Y as the

ordinate of the mean line, the point of the profile plane
is given by

Y .Yys-- -_ . .-
at a I al

(86)

with ~ denoting the distance of this point from the x
al

axis (fig. 12). For starting points at greater distance

7
from the profile, put — s g, that is, let the mean

a? al

line and the coordinate axis coincide; but the two values
must be carefully differentiated in profile proximity.

When in the following a method for computing the
plane potential flow about general thick wing profiles is
evolved, it is practical to utilize fully the data secured
for the generalized K~rm&n-Trefftz profile, since the flow
condition for each of these profiles is known. As the
calculation is to deal with the flow about a g,eneral pro–’
file- in the neighborhood of the profile but not on its
surface, the method can be restricted to an approximation,
that Ts, the given general. p”rofile is closely substituted
by a generalized K5rmhn-Trefftz profile, which merely
stipulates knowing the profile constants for this similar
K&rm&n-Trefftz profile, which then is a good approximation
for nearly all practical profile forms. T$e substituting
singularities of this profile are herewith known, and it
will not be necessary as a rule to check on the given
profile the extent to which it is represented by the
singularities .

The reason for checking the profile contour (II, 3)

I

—



is simply in order to show how closely the contour of
_g,qnqra.1pqof$les agrees with the closed streamline of the,“..-!. .“-. .
approximately resolved flow.

But the singularity distributions afford, In addition,
still other new profile forms with certain, predetermined
profile characteristics. They may even vary substantially
from those of the ~arm5n-Trefftz profiles if provision is
made that the’ singularity distributions characteristic
for certain profile forms are combined in a manner other
than that prescri-Ded for the K&rm&n-Trefftz profile. The
profile contour is computed from the singularity clistribu-
tions analogous to the method employed by Fuhrrnann (ref–
erence 6) to airship hulls. By the determination of the
velocity field of these profiles the pressure distribu-
tion can be indicated also in good approximation. *

2. Determination of the Profile Constants

The generalized K6rmdn-Trefftz profile is completely
defined by four profile const~nts. But before the calcu-
lation can be made the mean line and. the a,xis of the
K~rmin–Trefftz profile must be plotted fj.rst in the given
general profile, which agrees with th~~ mean line of the
general profile only for symmetrical profiles, The mean
line of the section iS closely approxiu,ated by the line
connecting the centers of all the circles which touch the
profile contour twice from the inside (fig. 13), the cur–
vature circle (radius p) on the nose included. ‘The axis
of the K6rm#in-Trefftz profile which at the same time is
the x axis of the plane of the section is given by two
points AI1 and A21 (fig. 13). Point Al’, located
at the section tip, forms the vertex of the pointed trail-
ing edge; for sections rounded off aft** of the rear con–
tact point of the tangent to the section lower surface,
of the chord, with the section is chosen. Point A21 is

located at half curvature radius
($)

from the nose on

the mean l,ine.*** Distance AltAai is put equal to ~at.

______________________________________________________

*Although..it affords the closed, strea:filine for the flow in
x direction exact, the vortex-distributions for the flow
in y direction can only be approximately determined.
**Strfctly spea’king~ it should be constructed just like
point All at the-nose.

***Herewith the position of point A21 is accurately
enough defined; although the plotting of the curvature
circle Is afflicted with a certain error.
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The geometrfc angle of attack does not, in general,
ag

agree with the angle of attack a which must be measured
from the x axis.. With as denoting the angle %etween x o
axis and profile chord (ag = O) (fig. 13):

a=a /3+ as (87)

The ordinate axis, axis y, @f the profile is the median—-——-—
vertical on the length Al! Aaf.

Quantities tan $ and P giving the camber and the
reversed curvature are obtained from the ordinates of the
mean line and not from the tangents (as lirnbaum did)
which cannot be accurately plotted. For generalized
Kirmdn-Trefftz profiles the mean line is, in good approxi-
mation,a cnrve of the third degree (equation (53)) through
points A11A21 , with which the general profile must coin—
tide in two additional points. Choosing the points at
J!= = ~~ and at-0.5 with the ordinate at x = 0.5 withal

Y~
~

the ordinate ;T (fig. 14) affords*

1. The index for the camber

2. The index for the reversed curvature

(88)

(89)

This secures the quantities which define the intensity
of the vortex distributions ,for the curve..d_S-shaped mean
iine.

.—

The two remaining profile constants of the general-
ized K&rm&n-Trefftz profile must be computed from the
thickness curve of the profile; whereas a Joukowski pro-
file requires only a section constant d/a for the thick-
ness, the finite trailing edge angle 6 on the K6.rm&n-
Trefftz profiles affects the thickness at every point,
particularly, a profile of finite thickness, the crescent
----- —.--——— --_-—--—————-— —.-——-- .——- ———-_
*See also: equation (54) and the context.
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is left over for ~ = O. Theref ore , the thickness of a
.... L a .. . .
Karman-Trefftz profile iS defined by two crlterionq 8

d
and -,. the magntiude of which is not ascertainable from

a..’
the plotted profile without specified assumptions. If 8

were given the value of ~i (denoted with ~a~ by”Betz-
a

Keune) couldbe deduced from the thickness at profile cen-
ter by the Betz-Keune method (reference 3, equation (s)):
but it is found that 8 cannot be accurately enough de-
fined from the angle at the trailing edge, because the ef-

fect of the constant $ on the profile thickness starts
a

too close to the trailing edge, as is readily seen from the

dK6.rm&n-Trefftz profiles. * Therefore, 8 and had to
z

be secured in a different way. Sjnce the thickness remains
approximately independent of the camber an~d the S curvature
(See equa”ti-on (2) of reference (3’)} and since the symmetrica-
1 KArm6n—Trefftz profile acts , in good approximation, as
if the ordinates of the crescent with the edge angle 6
and the ordinates of the Joukowski profile with the cri–
* ?.jp

d
terion were additive,** the profile constants can be

z

expressed by approximate formulas. If profile criterions

are employed again at ~ = &o.5, it then is expedient to

DI D2
denote ;~ ) as thickness at -x- = 0,5 and -- as thick–

al al

ness at -x- = -0.5 (fig. 14).
al

Then 6 follows at

(90)
dl

(

Da Dl~ “

) (

D2 ‘l\-
z--- - -- ~J3+ —-—

a 3 al al L at al )J
,,.

and 6, in radians, at
________________________ _-_.-——---———--——-—---——----—---

*Angle 6 at the trailing edge is read off as’much as 80
percent too great.
**For the symmetric Joukowski profile- and the crescent the
ordinates in each point are easily secured, but that for
the IC&rmAn-Trefftz profile is ve’ry complicated.
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D Da \
6

4~3-:_-_l:---
3 { a~ al j

(91)

Although these formulas are not exact, equation (90)
proved very satisfactory in a check on a large num%er of
K&rm&n-Trefftz prdfiles, and equation (91) agrees with the
correct values up to= 1°. Since equation (90) is inde–
pendent of 8, an error in 6 is of little consequence
on the subsequent results. With tkLt?6fi? constants the aero–
dynamic charac$eri.st.jcs of ge~>-ralize-d ‘Kdrrn-&~_-Trefftzpro–.=—-..
files themselves are secu~ed.

....
These relations ~lso hold,-—-..- ...... . .......

for general profiles with j.h.e.s_a-me“con--a-~p”$”o~~~at.e.i~~~~ -— -— -- —-.
s%a-n:t.s.. The theoretical lift is

&.....

4ma1 ( 16
~~ is the theoretical lift gra–where ---- 1 + - — +

t 2’IT a)
client that is always greater than the true value, because
the friction is not taken into account, and U. =

(
-“P-:V

\.
is the zero lift’ angle of this profile,

/
measured from the x axis. The moment coefficient, referred
to the cenbroid F of the prof ile i is (see reference 3,
p. 341)

\
sin2’i3 --W

(:)
(93)

The profile has a fixed center of pressure, when PIZ ~ P.*
3

3. Substitution of a Given Profile by Singularities

In a check on the extent to which the generalized
Kirmin–Trefftz profile obtained by the computed constants
agrees with the given general profile , the study can be
limited to the profile in parallel flow along the x axis,
The parallel flow’ along the y axis is essentially affected
by the vortex distribution of.the fla’t plate into which
the profile chord enters. Against this effect the dis-
-—_____ -.-— ——-—_—-— ----—..—— — --—-——— 4----------——-——— ---
*See reference 3, equation (48) , where, however, the
squared terms are taken “into account.
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tribut ions due to profile thickness or to the mean line
are inferior, especially s“ince YY always rem”ains smaller
than Vx(Vj <Vx): hence the approximation of the profile

by one of the Kdrm~n-Trefftz type should always remain
accurately enough in this direction of flow.

For the flow along the x axis the streamline equa-
tion (58) - if the closed streamline is given the value

$= -—-A— = o * _ affdrds

‘ere‘! (:~’:vand“’(:~;:oare’according‘0
equations (60) and (61),’ the abbreviations of the inte– ‘
grals of the flow function of the respective source-sink

/g !
and vortex distributions

()fu ._; ●

The subscript u ,,,
/f\, \

of fv ‘--{al) is always In agreement with that of QV and

Wv.’ These integrals have been evaluated for all neces–
/

sary values -?x- 7and -- and the results plotted in fig-
al at_

ures 15 to 19 against –y- for fixed abscissas ;Xy and
at

tabulated in tables 1 to 5. Allowance for the squared
term gx __

*Provided this streamline in the rear stagnation point

of the profile
(

.~l? ‘_x_ = +1.0; -y- = 0) reaches the

t
at / at

1
value —~- = O. This is achieved with the aid of the

a tvx

constants Wa (1;0), ‘i= (1;0), and W ~ (1;0).
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(94a)

adds the integral Q4’(:;$ ) of the source-sink dis-

tribution f4(~/at) the values of which are shown in fig-
ure 20 and talle 6. The squared term is usually needed
in a check of the profile contour.

The streamline simulated by the singularities is de-
fined by approximation on the assumption that the given
profile actually has become the streamline through the

d
computed profile constants tan B, W, ~, and 6 (equa-

tions (88) to (91)). In this instance the right- and left-
hand sides of equation (94) would have to agree. Then
the successive entry of the coordinates of individual
points of the profile contour in the right-hand side of
(94) with due allowance for (86) - the values of the in-

figures 15 to 20, and the calculation proceeding in this
manner with (94) - ultimately affords a value , which shall

be expressed with -
(

~)

a’~q”
It affords already a very

()

Ygood approximation for the ordinate --- of the
Q

closed streamline Wx= 0.

Since all singularity distributions were directly
derived for the contour of a generalized RSrm&n-Trefftz
profile, the form of the given profiles is approximately
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always complied with by the singularities. Hence, no
peculiarities are anticipated at ant profile points, and
it iS sufficient to dompute the ordinates of the stream-
line in a few points.

The method is first checked on three K&rmi5n-Trefftz
profiles (fig. 21) constructed according to the Betz–
Keune method (reference 3) with the profile constants
given in figure 21.* The constants are computed accord-
ing to equations (88) to (91) and the values posted in

f’‘max
. -—-

(t
= 0.138’]
—-------)

d
-= 0.089;
a

/D

(

max =—-—— o.120’~
t —-------)

d—= 0.075;
a

Third nrofi~:

/ -——— = 0,195
)(DYX —-

The result is

I
Da D
—- = 0.272; –~ = 0.130; ~: = ;$ = 0.0
a’ ~t

8 9°= tan @ = o; p= o

I~
Dl

= 0.234; --- = 0.112; $: = :+ =al 0,038

8 = ~o tan ~ = 0.051; p = O

Da DI
—- = 0,398; ;; = 0.130; ~ = ;; = 0.066
a’

d
= 0.15; 6 = 8° tan P = 0.088; 1A = O

a

Comparison of these values with those in figure 21 shows
a slight error in edge angle, which, however, is scarcely ..
noticeable in the calculation since the effect of thick–
ness d/a is much more decisive for the profile contour.
Figure 21 indicates that the second approximation (squared
term gx accounted for) is a very good check, even for
great thickness, of the extent to which a given profile
agrees with the K&rm&n-Trefftz profile.

As an example for general profiles, three NACA pro-
files are selected (reference 7) and first the profile
constants are computed (see fig. 22):
————————-———-—-———-——-—.-———-— ————-——-—-———. --—-

*tL_m
——
‘“a in reference 3.—-—- and tan $ = –Z

a-a
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NAc!A 2412: .
●

D2 D
= 0.241; --- = 0.125; ;; =

y~
—- 0.0323; ;T = 0.0246
al

d
= 0.0’72; 6 = loo tan $ = 0.038; w = 0.021

a v

“NACA 2?12:

122-- = 0.240; ~~ = 0.129; :: = 0.0242; ~ = 0.384
~! al

&
= 0.068; 8 = 11° tan $ = 0.042; @ = -0.038

z

NACA 4418:

D2 D1 y~
= 0.386; -T = 0.190; --- = 0.0667; ;+ = 0.0525;7 a

d
= 0.109; 8 = 16° tan P = 0,0-8; u = 0.038.

a

To explain the calculation method, the calculation of

(.JY)—-is carried out for a point of the NACA 2412 air-
a’ $

foil section. The profile point selected is ;X7 = – 0.5;

Y-- = 0.153. Then (86)
a’

7-- = 0.153 - 0.032 = 0.121 and there is obtained~t

Q,(-O.5; 0.121) = -1.11 W2(-0.5; 0.121) = -0.308

q5(-o.5; 0.121) = -0.298 W3(-O.5; 0.121) = -0.033

~Q4(-o.5; 0.121) = -o.195] W4(–0.5; 0.121) = 0,167

?f2(l.o;o) = 1.0; W3(1.0;O) = 0.25; W4(l.0;O) = -0.166

~y\wherewith equation (94) gives: - (:7)$= -0.131 + gx.

The accord with the ordinate of the profile point is still
unsatisfactory. With the quadratic term (equation (94a))

gx = –0.018 becomes
(~_\

= 0.149 and affords a sat-
~a’j~
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I

I

i

I

(
,
I

isfactory agreement between profile point and streamline
of--the “felated ‘g-enerallzed IC&rm6n-Trefftz “profile. The
same procedure is followed at the other points of the
section contour. The results, plotted in figures 21 and
22 manifest satisfactory agreement at all points.

4. The Velocity Field of a Given Profile

The singularity distributions on the mean line of a

profile induce at each point
‘(:~~)’

(fig. 23), a

speed ~ = w cl+, the slope of which toward the positive
x axis a and the absolute amount JMI=W. The amount
and the angle follow from the components parallel to the
coordinate axes as f ollows:

(95)

and

The speed components u vand are obtained by
Y; 7.

differentiation of the equation of the flow function

o/a’ Vm with respect to ~ and -x-, being composed of
a’

the differential quotients of the flow function $x/a’ V~

obtained for the flow along the x axis, and the flow func-
tion *y/a’ Vm along the Y axis; it is:

r ~$xh$v-..—- -—&—-
U at Vm+ at v
--
Vti= cos a ---——

1

––---–%an a
b y~at p y/al

-b Wx ~*y-
-——. -—---

v= al Vm+ a’ v
—- -cos a ———--- ——————%an a
Vm b x/af b x/al

(97)

L
u

—.
The speeds

7-
and -v-, being thus known from from equa-

m val
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tions (58) and (59), can be defined by the method given
in the tabulation. Each source and vortex distribution

composed of fv
()
&
al

utes its share to the

and tan 13, p, g and 6, contri%-
a

speeds (made dimensionless with Vo)

1 for the source distributions

along the x axis and

along the y a.xls

Correspondingly the vortex distributions are

Thus it affords, according to the tabulation, for example :

The velocity field for each of the five singularity dis-
tribution is shown in figures 24 to 28, the lines of con-
stant speed in x and y direction being connected in
a system, from which the speed portions of a selected
singularity distribution for each point can be read off.*
The calculation of the correction terms is usually un-
necessary, since they merely afford an error estimation
and are given in (82) and (83) simply for the sake of
completeness. One exception is the quadratic term
t) gx
------ , which essentially affects the direction of the
a x/af

*3eeause of the necessary additive term (equation (42)),

the speeds in the vortex distr?.hution
(

% :~j (fig. 25),
were ebtained by numerical integration.
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a Qx/al Vm
speed. _ This is d_ue7to_ the fact that the speed .—-.— —

a x/al
to be multiplied by cos u- begins with terms already

h gx
small of the first order. Here —————— is of the same

~ .x/al
tan ~ a Qylav Vmorder of magnitude as the linear terms of —-—- —-— ●

a x/ar

As an example, take the velocity field of the
G6%tingen 624 airfoil section (reference 8) (see fig. 29).
Computing the profile constants ‘by equations (88) to (91)
affords, with

Da
= 0.319: ~.,. —- = 0.160at al

Y2
= 0.102; :; = 0.062;-i

the values ‘

~ 8
= 0.10; 6 = 12°; K = -= 0.067; tan 8 = 0.109; w = 0.107

a l-f

hence for the zero lift angle: –a. = P – ~ U; a. = –4.65°.

Since the profi”le chord sIopes at angle as = 2.2° toward
the x axis, it is found (equ<.tion (87’)) that the zero
lift angle aog = -4.7°-2.2?-6.90 is in complete agree-
ment with the experimental value.

The speeds at a point of the plane of the section
x 7

with coordinates -- = -0.!5 and -- = -0,3 are to be
al al

computed. ‘Figures 24 tot28 give
. .

aQ1ll a C5 a W2
----—— = , —----- = 0.23 -----—
hy~at ‘h y/at

= -1.52 ,
b y/a’

aw3 bw,
----——’ “’=0.63 —----- = 0.21
ayla’, a y/af

h Q1
..

a Zi5 t)w~
.—---- = 0.25 —————-= 0.3’1 -—-—-- = 0..42
a x/a.l a x/al . a x/a~

,,,

aw=’a~~
—-———— = 0.34 —-–- = -0.15
a x/al b x/at
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for which the tabulation accordingly shotis the following:

u--
Pm =

cos a [1.006 + -1.806 tan a]

v b ~x

7; =
-cos a [-0.005 - 0.397 tan a’J - --—-- cos a

b x/at

and
bg

x.---— =-0.028
~ x/al

The only quadratic term to be considered in the calcula-
@ a gx
tlon is —---- * For the mean line @one, which up to now

~ x/at
indicated the substitution of the profile according to
Birnbaum, the same calculation methed yields

u--
v = cos u ~0.871 + -1.52 tan uj

03

T
~ g~

— = +Cos a [-0.062 - 0.58 tan aJ - -—-
v~

cos a

~ x/al

and
a gx

------- = o
b x/al

With a = 3.4° for the angle of attack which, according
to (92),gives the lift Ca = 1.0, and the profile thick-

ness taken into consideration, it is found that

u = 0.897; f- = 0.029 + 0.018 = 0.047
,f; m

and for the mean line alone, according to Birnbaumfs more
convenient method in this fnstance

.

?m=0“779;f: = 0.097

This calculation 1S continued for other ordinates -Z at
a!

point ;XY = -0,5, with added choice of angle of attack
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a= -4.65 °(ca = O) and a = _o,70(ca = 0.5), The re-

sults ‘are shown plotted against ‘~/a) in figure- 30;

whereas figures 31 and 32 shows other sections for — =x
al

constant , In all these graphsBirn’baumts approximation
is indicated with dashes. The solid curves give the
values with profile thickness allowed for, including the

ag
quadratic term –---x-. In the dash-dot curves this

“. a x/at
term has been discounted. In figures 30 and 31 the ve-
locities were not computed up to the profile contour
because the approximation is no longer applicable there.
It is thus readily seen that the effect of profile thick-
ness is in many cases quite pronounced, The discrepancies
are even more pronounced near the nose where the location
of the forward stagnation ~olnt by the J3irnbaum approxi-
mation becomes very inaccurate, and infinite velocities
occur at the mean line on flowing past the leading edge.

5. Appendix: Structure of lTew Profile Forms

In the ensuing development of new profile forms the
computed source distributions of the Karma.n-Trefftz pro-
file are duly considered, since arbitrarily chosen source
distribution would merely produce ’profile-forms the ulti-
mqte shape of which it would be impossible to foresee.
The only essential thing will be to so modify the form
of a Kdrmdn-Trefftz profile that the nose is given a
fuller form, the location of the maximum profile thickness
is changed, or a different mean-line form is prescribed;
this means the application of the source distributions
leading to the Joukowski profile (fig. 33a) and to the
crescent (fig. 33c) with edge angle 6 and superposition

()

tby the simplest possible additive distributions fz ~

with a flow function
,.~\,

Qz@,al/ Then the stream func-

tion of a symmetrical profile for the flow in x-axis
direction is given by:

(98)
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h
where — is a constant. The type of addi+ive distribu-

~1

tion. fz
[~

()
depends upon the desired profile shape.

at

For a fuller nose, for example, a source and a sink of the
same Intensity is applied near the nose , or a doublet.

As to the displacement of the point of maximum pro-
file thickness, oq Joukowski profiles, it is about one-
fourth aft of the leading edge; on KArm6n-Trefftz profiles .,
it moves with increasing edge angle 8 closer toward the
center. Suppose that a ,greater shift of maximum thick-
ness toward profile center is deeired. This displacement

is favored <y the function f4
()
-k=) Interpreted as source
at

superposition (fig. 10), which heretofore appeared solely
as quadratic small term and which by %tself hae ‘a crescent
(fig. 33b) with angle 6 = O as streamline. The maximum

thickness occurs at ~, where the sources change to

/’ ~ ) ~k’ forwhere approximately
(
for

()

t<<1.. f.(--) “ ;~)

(fig. 9). Putting q
‘ g\\:’o,

(
the point of maximum. pro-

-J ,

file thickness ~~ is:

h F~/at 1 \ 1 1 1
—

[(
=-----+--—--\+-A —----—- I

al a Xm
1+

(QQJ

d

longer computable from ~- and
a

Then the thickness is no

6, because ~ also exerts no effect upon it, There-

fore, the thickness is prescribed at a selected point x~
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D 7
“&d”-that –- “= 2 —. The str-eamline-.~epresent ing a sym-

al at

metrical profile -curved profiles being discounted -
must therefore pass thr~ugh the point with the co-ordi-

X1 lD
nates -q and - —, and carry the identification

$~ a’
Zal

.- - = o. Therewith equation (98) becomes
~f TX

,’X1 ln\
+ ;~Q4–– –--I

ia~ 2 a’)

(loo)

Besides the thickness ~ at ~~ the point of maximum
at

thickness ~ and the edge angle 6 are given, The
-xl 1 D ~

values of Qv(’ --; - -- ‘ being obtainable from figures
\at 2 atll d h

15, 16, and 20, the two constants - and -- themselves
at

follow from equations (99) and (1007. The result, for
cam%ered profiles, to which the known vortex distribu-
tions are applied, Is the flow function

(x-’
+6

iLw’ (:? ;)- ‘4(1;”) ‘
(101)

YfJ
where , according to equation (53), the ordinate — of

al
the plane of the singularities is given by
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(102)

Since only linear terms are involved, tan 131 and pl
no longer afford an accurate form of the median line of
the profile (the form of the mean line remains for dis-
appearing thickness only) as is readily seen on the first
approximation in figure 21 (third profile), However,
the camber of this median line can be established by pre-

(x F ‘\scribing a point P -–;-- > 0
)

as profile point and
~! at

computing tan @l for this point from equation (101);
whereas WI is defined from the desired O angle of at-

tack a“ =“--fl -~’” . It is best to select the point
4)

with the abscissa —x- = O and the ordinate ~ = tan $

IDoy Y
at

Do
al

+ = Q+ --, where — can be given according to
;~ataf a’

equation (100) or computed for a symmetrical profile by
means of equation (98); tan B is the desired profile
camber tan S Z tan 61.

To illustrate: Take tan @l = 0.08, Wl = 0.038
and 6 = 16° from the NAGA 4418 airfoil section and
shift the position of the maximum thickness toward point

x D
—— = -0.2; while U = 0.32 remains for ~ = O. Then ,
a! at

according to (99) and (100), ~ = 0.096 and ~h~ = 0.06!3.

Next is computedthe value of the flow function *X---—-
at Vx

from (101) and (102) for different a%scissas ;XT and

Fseveral ordinates -- = 0.0, 0.05, 0.1, 0.15, by post-al

(

‘x _Y_‘i (A* y“
ing the values Qv ——; and Wv

(
from

al a’~ a“ ;7 )

the figures 15 to 20 or tables 1 to 7 and plotting the
flow function against

Y ? Y8-—.=-- +—
al at al
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in figure 34. The values ~ for
4.

— = O are the,- . . af Vx.
.T,
‘4X

points of the streamline —— = 0 of the looked-for
al v=

profile. (The method of computing a profile from the
singularities corresponds to that by Fuhrmann (reference
6) and can be used for any arrangement of singularities. )
For the example in question the profile of figure 35 is
obtained. The nose is scarcely changed by the distribu-

‘~\,,.

btion f ~i , it remains the same as on the Karnian-
4

Trefftz profile, whence its curvature circle is given
with sufficient accuracy by equation (15) according to
reference (3). The foremost profile point is by

L ‘from #point
2 a’

A21~ --= - l.O”\.;:, The profile presents
)

a substantially different thickiess curve from a normal
K&rmsn-Trefftz profile and resembles those developed by
Piercy, Piper, and Prestofi (reference 9) by conformal
transformation.

According to previous considerations , equation (59)
can be retained for the flow along the y axis. The speeds

u—- and ~v-,. are lastly obtained by differentiation of
v~

(98), (10~5, and (59). The individual portions can be
read off from figures 24 to 28. Since , in this instance,
the profile form has been defined from the singularity
distributions, the pressure distribution itself can be
computed for these profiles also. Admittedly, a close
approximation is obtained only for small cc, sifice the
streamline Qy is usually not exactly fulfilled.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics,
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()Totie l. flow function Q1 $;$ of the source
4(% z) Of the .0.,.,

TabJe 5. Flow func+ion W

distribution fl($/a’)offhe Jouk&ki-Profile. distribution j4($/a’)of the s-shai~edukeon line.

0,05
I

0,1 ..=
0,05 0,1 0,15 0>2 0,3

+ 0~18 =F0:108+ O:i!38% Oj89 + 0j68
+0,192 3=0,174+ 0,159+ 0,145+ 0,119
+ 0,21670,197 +0,179 ~ 0,164+ 0,139
y 0,164+ 0,157I+ 0,148=F0,142+ 0,129

I

+ 0,75
+ 0,50
+ o#5

— 0,25
— 0,50
— 0,75
— 1,00

—0,191
—0,450
—0,718
—1,028
— 1,220
—1,328
—1,162

o

—0,210—0,221
—0,449—0,448
—0,698—0,672
—0,970—0,914
—1,148—1,083
— 1,223—1,138
— 1,050— 0,964
—0,318—0,376

—0,231—0,242
—0,446—0,444
—0,652—0,640
—0,868—0,834
— 1’,026—0,965
— 1,061—0,991
—0,892—0,824
—0,403—0,414

— 0,264 0
— 0,417 + :25 + 0,127
— 0,605 -&0,50 + MM
— 0,764 + o,75 + o,238
— 0,860 * 1,00+ 0,165
— 0.853.—-—
— 0,729
— 0,439

‘z j(-. _)Table 6. Flow function Q4 a,, , of the source

d}stmbution,O,lrcf= }4 (g/a’) ( F,q”re :3)... _..-

X:] o I 0s05 I 0.1d!. tr, bu+ion 7S ($/a’) of +he-m-esce~+ 0,15
I

~,~

I
0,3

\l ii
x a’ o 0,05 I 0,1 I 0,15— T “‘~-0339‘-0316 1-0298I + :25 —O:30i—0:291 – 0:274

–0’350 –0312 + 075 ‘z:~:s
–0,207 –0199— 0385 — 0,334+ O*5O

“] b ❑w: %%— 0:279— 0:253~ lJO
—0,177 — 0,177
—0,080I— 0,098

—0,277—0,259 — 0,231
—0,256—0,239 — 0,213
—0,189—0,180 — 0,164
—0,106—0,108 — 0,109
—0>042—0,051 — 0,060

a’ “\I I I

+ 0;5 ❑Yz
+ 0,50,—0,352
+ 0,75—0,195
+ 1,00 0

— 0,442
—0,405
— 0,324
—0,195
—0,036

— 0,4201— 0,401
—0,383~—0,369
—0,304 —0,289
—0,190/—0,185
— 0,055,—0,069

()Table 3. Flow function ~~z ~; ~, of the vortex
Table 7. Addltlve volues o the flow functmn

Q, (+,:,) Q,(; ; $ )——.
~< “--0>95 -1,05 -1,,0 ,:; ‘:1,05 ~ -,,,(J

o —0,582 o 0 —O,m
0,025 —0,559 —0,100 —0,047 — 0,020—oj37 —ojo4
0,050 —0,531 —0,170 —0,107 — 0.028—0,0145—0,012
0,10 — 0,500— 0,258— 0,204– ,042— 0,0233— 0,022

dls+r!bu+lon L (t/a’) ~ the flat Pia Fe.

\l 1-I
x ~,—.

a’

+ 0,75
+ 0,50
+ o&5

— 0,25
— 0,50
— 0,75
— 1.00

0,3

+ 0,87
+ 0,68
+ 0,483
+ 0,30
+ 0,127
— 0,003
— 0,065
+ 0,062

0,05 1 0,1 ] O,lJ] 0,20

+ 0,78 +0,80 +0,82 +0,84
+0,53 + 0,566+0,595 + 0,626
+ 0,280+0,319 + 0,364+ 0,407
+0,05 +0,100 +0,149 + 0;00
—0,195—0,134 —0,064
—0,419— 0,338—0,250 —0,160
—0,628—0,509 —0,385 —0270
—0,570— 0,396—0,254 —oJ36

+ 0,75
+ 0,50
+ o#5

— 0,25
— 0,50
— 0,75
— 1,00

‘. x

ii

\]

~ —0,95 I—1,05

I
—1,10

I
—0,05~ —i,05–-1,10

()xi
Table 4. FIOW function W~ ~; ~ of the vcm+e.x

o — 0,039 0 — 0,95—0,424 — 0,184
0,025— 0,040—0,016 —oh — 0,82—0,374 — 0,170
0,050— 0,054—0,026 —0,019 — 0,68—0,329 — 0,154
0,10 — 0,080—0,045 —0,037 — 0,47—0,241 — 0,102dls+rlbu+ion ~s (Ha’) of +he curved da+e.

-%

II
x ~, o 0,05 0,1 0,15 0,2 0,3

a’

—0,250—0,203 —0,158 —0,114 —0,070 + 0,010
~ :25 —0,220—0,175—0,126 — 0,089—0,048 + 0,032
* 0,50—0,125—0,086—0,045 —0,008 + o,028+ 0,095
* 0,75+0,033+0,064 +0,092 +0,120 +0,147 + o,196
* l,W +0,25 + 0,255+ 0,265+0,275 + o,288+ 0,315

—0,85 I —1,05 1 1,101 –0,95I –1,05I –1,10

i

0,205 + 0.290 + 0,334
$
0,195 + 0,157+ 0,139

0,209 + 0,290 + 0,330 0,182 + 0,151+ 0,138
0,217 + 0,292 + 0,327

$
0,176 + 0,148+ 0,135

+ 0,232 + 0,301 + 0,327 0,171 + 0,142+ 0,131



NACA

K.

1023

~igure I.-Circle
curved

transformed on a
Joukoweky-profile.

Figure 5.-The additive formation

+ ‘ (+)
P(x,y)

Figs.1,2,3,4,5,7,8,9.

+

4
E

Figure 2.-Velocity jump at profile
mean line.

Y

‘2’

Figure 3.-Division of speed on
line in normal and

tangential components.
-, 1,.

mean

II

Figure 4.-Mapping of a circle on
symmetrical
profile.

a
ICkirm&-Treffts

Figure 8.-Simpl5.ficationof integral Y.v

of flow function.
I

\ m*’”=’~+-‘~~~x{
[
/’. Figure 9.-Source distribution F&ure 7..Identification of complex

E flow potential in the
~! ?s(~)of crescent

for edge angle8=l.O
plane of the section.

j

1,



——

NACA Technical Memormdum No. 1023 I?igs.6,20,29.

Figure 6.- Circle mapped on S-shaped mean line.
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Figure 29.- Gottinger airfoil section No. 624.
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Fig. 26

Figure 26.-Orthogonal system o-fvel cities induced by the
Fvortex distributionf2 (_) of the flat plate.
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